Artificial intelligence in corneal diseases: A narrative review.

Publication Type Review
Authors Nguyen T, Ong J, Masalkhi M, Waisberg E, Zaman N, Sarker P, Aman S, Lin H, Luo M, Ambrosio R, Machado A, Ting D, Mehta J, Tavakkoli A, Lee A
Journal Cont Lens Anterior Eye
Volume 47
Issue 6
Pagination 102284
Date Published 08/27/2024
ISSN 1476-5411
Keywords Artificial Intelligence, Corneal Diseases
Abstract Corneal diseases represent a growing public health burden, especially in resource-limited settings lacking access to specialized eye care. Artificial intelligence (AI) offers promising solutions for automating the diagnosis and management of corneal conditions. This narrative review examines the application of AI in corneal diseases, focusing on keratoconus, infectious keratitis, pterygium, dry eye disease, Fuchs endothelial corneal dystrophy, and corneal transplantation. AI models integrating diverse imaging modalities (e.g., corneal topography, slit-lamp, and anterior segment OCT images) and clinical data have demonstrated high diagnostic accuracy, often outperforming human experts. Emerging trends include the incorporation of biomechanical data to enhance keratoconus detection, leveraging in vivo confocal microscopy for diagnosing infectious keratitis, and employing multimodal approaches for comprehensive disease analysis. Additionally, AI has shown potential in predicting disease progression, treatment outcomes, and postoperative complications in corneal transplantation. While challenges remain such as population heterogeneity, limited external validation, and the "black box" nature of some models, ongoing advancement in explainable AI, data augmentation, and improved regulatory frameworks can serve to address these limitations.
DOI 10.1016/j.clae.2024.102284
PubMed ID 39198101
PubMed Central ID PMC11581915
Back to Top